Abstract

The theory of casein and gluten-derived exorphins and their influence on autism via gut diabiosis is well known. This theory has given rise to a demand for foods and supplements, which are both casein- and gluten-free. However, as more test results have been reported on different products, there has been an appearance of often-spurious results. This has been especially true of probiotic supplements. Until now, the issues surrounding such wide-ranging results have not been addressed. This report discusses the technical issues involved in testing and presents a concluding commentary as to the relevance of such tests to the autistic community.

Currently, there is a demand in the autism community for foods and supplements, which are both casein and gluten free (CGF). There is also an increasing demand for probiotic organisms. Question has arisen regarding the ability to produce probiotic organisms which can qualify as CGF. The CGF issue presents several technical issues, which have remained un-addressed.

At present, the overwhelming majority of probiotics are produced in growth media, at some point contain at least one dairy product. However, it is generally agreed that through proper attention to growth conditions as well as processing methods, the state of the art is such that for all intents and purposes, the final products can be considered milk or casein free. This is because during normal growth and processing, the bacteria consume the dairy constituents of the growth media and residuals are separated during the concentration/purification of the probiotics. However, there are often problems demonstrating this property due to the inherent problems of current assay methods.

There are several types of assay methods currently employed for the detection of casein. The first is precipitation and quantification by "total protein" methods such as the Kjeldahl procedure. The second is by an enzyme-linked immunosorbent assay (ELISA). The ELISA method utilizes antibodies to detect the casein as a target antigen with subsequent reporter systems (e.g., colorimetric). The former method evolved out of the food processing industry as a way to test milk products for casein. The method relies on the fact that the vast majority of protein present in milk is casein and for that industry, the method proved useful. Additionally, the probiotics are living organisms producing a wide variety of proteins. These too can contribute to a false-positive signal from the reporter system due to similarity to casein in sequence. The chance of this happening when using a mAb is much less than when a pAb is employed, however, the standard "kit" used to detect casein contain pAbs not mAbs. It is worth emphasizing that different bacteria produce different levels of various proteins so there can be what appear as spurious results from species to species and even strain to strain. Because the probiotic organisms contain thousands of different proteins at any given time, the method is not appropriate for the determination of casein in any given culture. Similarly, the latter method has several drawbacks, which are discussed below.

First, in the ELISA, it is most desirable to use a monoclonal antibody (mAb) vs. a polyclonal antibody (pAb) for reasons of specificity. With a mAb, the chances of a false-positive are much less because the mAb is much more specific for the desired target (in this case casein) than the pAb is. The pAb by its very definition, is specific for several if not many different targets. The reason is that a pAb is not one single antibody, but consists of many different Abs and hence the "poly." For many purposes, a pAb is sufficient. The reasons for the use of a pAb over a mAb range from time to cost. A pAb can be produced much faster than a mAb and at much less cost.

Those are just the first problems associated with the ELISA assay. While ELISA is a very good assay technique, it is less than desirable for assaying casein in probiotics. The reason for this, in addition to those above, has to do with how the "reporter" portion of the ELISA functions. While there are different ways to perform the ELISA assay, they all can be generalized as follows. During the ELISA, when a target molecule binds to the Ab, a subsequent enzymatic reaction (typically the enzyme is "linked" to the antibody) is used to "report" that the binding occurred. This enzymatic reaction, more often than not, involves a peroxidase or phosphatase. Herein lies the problem, because probiotic produce prxidases and phosphatases. The problem is further confounded because different bacteria produce different levels of these enzymes. For instance, Fitzsimmon and Berry (1994, pp 125-33) showed that Lactobacillus acidophilus (LA) produce peroxidase. Not surprisingly, LA shows up as a positive using the ELISA even when produced using the very same procedure for other strains which show up as negatives. Further, there are probably other enzymes produced by the bacteria, which can similarly trigger the reporter system resulting in a false positive.
There is a third, though less-
common method for detecting casein,
which utilizes gel (typically, SDS-
oligocyclamide) chromatography.
Cells, cellular extracts are placed in
a gel at one end of a gel
with the smaller
proteins to move through first and the
smaller proteins to migrate more slowly
right relative to the smaller
proteins. This differential mobility in
the gel affects a separation of proteins
and protein fragments. The main
problem with this method is that it is
only possible, but probable, that
very different proteins (based on
molecular weight) can have the same mobility
the gel. This limitation can be overcome, but only to a degree, using
electric focusing gels. This process
has similar problems associated
with it.

Conclusion
As a final note, it should be kept
that the reason for the
ignorance over the casein in the first
place is the fear of the production of
probiotics from the casein. This is
due to the fact that the probiotic
organism is being subjected to
incubation, themselves
to enzymes capable of breaking
the casein. Vamanen et al.
(2005, pp. 146-64) recently showed
that the probiotic organisms, currently
used as health supplements,
are analogues of the Dipeptide
IV enzyme (e.g., PepX)
and is known to be able to digest
its. Noteworthy that the fact is that
the higher the concentration of
casein, the more likely it is to produce
false positive for casein while
colouring predominantly
white or yellow amounts of the
"amino acids."

Even as a whole, this information
clarify several standing
questions regarding both probiotic
organisms in their effect on
mental status in autism, as well as
observed test discrepancies. In light
of recent advances in understanding
underlying enzymology of
probiotics, it is prudent to
look at casein testing in light of the
biological significance that any
new presence might have.

The current state of the art
of casein testing should be given
proper consideration.

Correspondence:
Mark A. Brudnak, PhD, ND
Technical Director
MAK Wood, Inc.
P.O. Box 184
Thiensville, Wisconsin 53092 USA
262-242-2232
Fax: 262-242-9443
Email: markwood@earthlink.net

Bibliography
Fitzsimmon N, Berry DR. Inhibition of
Candida albicans by Lactobacillus
acidophilus: evidence for the
involved in a peroxidase system.
Vamanen P, Savijoki K, Aavall S, Palva A,
Tynkkynen S. S-40-molybdenyl
protease gene (pepK) is part of the
glRA operon in Lactobacillus
Jan;182(1):146-64.

KNOW YOUR SOURCE
Whole World Botanicals Sources its Maca Roots
Directly from Growers in Their Fields.

Dr. Viera Muller, co-founder of
Whole World Botanicals receives freshly
harvested organic maca roots from a grower
in the high Andes of Peru. To support organic
production, the soil must undergo a long
fallow period. Only the choicest (fluffy) roots
are selected for extract preparation.

Certified Organic
ROYAL MACA™ Root Extract

- No additives, excipients, colors, flavors.
- No irradiation, gas or autoclave used.
- Works through the hypothalamus and pituitary
to support endocrine gland function for all ages.
- Supports:
 - Erectile Function*
 - Libido*
 - Healthy Menopause (relieves hot flashes, vaginal dryness, mood swings)*
 - Uterine, Uterine, and Breast Health*
 - Provides nutritional, herbal support for people with:
 - Parkinson's disease*
 - Multiple Sclerosis*
 - Chronic Fatigue*

Hormonal balancing effects help improve immune function
mental focus and physical energy.*

Royal Maca™ (Lepidium peruvianum)
Powder and Capsules

Certified Organic

WORLDWIDE
BOTANICALS

FOR PROFESSIONAL PRICES and TO ORDER: 1-888-757-6026
INTERNATIONAL ORDERS Accepted by FAX: (212) 781-0440
We accept Master Card and Visa. Visit our website: www.wholeworldbotanicals.com