Experimental Treatment of Chemotherapy-Induced Stomatitis using a Homeopathic Complex Preparation: A Preliminary Study

Menachem Oberbaum, M.D.

Keywords: Chemotherapy, stomatitis, Traumeel®

Abstract

Stomatitis, by definition, is any form of inflammation or ulceration of the oral mucosa. The knowledge that chemotherapy often causes stomatitis may prevent the physician from planning such treatment because chemoradiotherapy is both toxic and immuno-suppressive. The pain and discomfort accompanying stomatitis can exacerbate the malnutrition due to anorexia or malabsorption. When stomatitis is complicated by a secondary infection, life-threatening sepsis may ensue.

Resumen

La estomatitis, según su definición, refiere a cualquier tipo de inflamación o ulceración de la mucosa oral. El conocimiento del hecho que la quimioterapia causa con frecuencia la estomatitis puede impedir que el médico proponga aquellos tratamientos, porque la quimioradioterapia es tóxica e imuno-supresor. El dolor y la molestia que acompañan la estomatitis pueden exacerbar la malnutrición debida a la anorexia o la malabsorción. Cuando la estomatitis se complica con una infección secundaria, un sepsis amenazador a la vida puede sobrevenir.

Introduction

In general, the higher the mitotic index for malignant cells, the greater the effect of the cytotoxic agent. This applies not only to cancer cells but also to normal, rapidly-dividing cells, such as bone marrow cells and mucosal cells. Therefore, as in malignant cells, cycle-specific drugs damage the bone marrow and the mucosa. In patients receiving continuous infusions or in those with renal insufficiency, for example, methotrexate can cause severe mucositis. Fluorouracil causes stomatitis when given in high, aggressive doses or when administered via intra-arterial infusion. Other drugs which cause stomatitis are dactinomycin, cytarabine, doxorubicin, daunorubicin, and bleomycin.

Stomatitis often develops following the administration of protocols containing TBI (total body irradiation), busulfan, VP16, or chloretap (Table 1). As can be expected, the myelosuppres-

<table>
<thead>
<tr>
<th>Drug</th>
<th>Related factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methotrexate</td>
<td>May be quite severe with prolonged infusions or compromised renal function.</td>
</tr>
<tr>
<td>5-Fluorouracil</td>
<td>More severe with higher doses, frequent schedule, and arterial infusions.</td>
</tr>
<tr>
<td>Actinomycin D</td>
<td>Very common, may prevent oral alimentation. Severity enhanced by irradiation.</td>
</tr>
<tr>
<td>Doxorubicin (Adriamycin)</td>
<td>May be severe and ulcerative. Increased with liver disease. Severity enhanced by irradiation.</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>May be severe and ulcerative.</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>Frequently ulcerative.</td>
</tr>
</tbody>
</table>

(Peterson DE, Schubert MM. *Principles of Oncology Nursing*).

Tab. 1: Chemotherapeutic Agents Commonly Associated with Mucositis

Biomedical Therapy / Vol. XVI / No. 4 1998 261
leukemia or chronic leukemia in the blast stage, 33% develop oral infections, with about half caused by *Candida albicans*, and 15% caused by the herpes simplex virus.

Additionally, 10% of patients with non-hematologic carcinoma and less aggressive treatment reportedly developed oral infections. Broad-spectrum antibiotic treatment for infection is not without danger because antimicrobial agents also destroy the normal flora, allowing other pathogens to intrude. Systemic fungal infection is one of the main causes of post-bone marrow transplantation morbidity and mortality. Immunosuppressed patients with fungal infections in the mouth or conjunctiva or both, develop systemic infections. Clearly, the risk for developing systemic infections and the accompanying mortality can be decreased by preventing oral infections. Almost 40% of adults and about 90% of children receiving anticancer chemotherapy suffer from mucositis of the oral cavity, with the higher rate in children resulting from the especially intensive chemotherapy in this patient population. Bone marrow suppression alone can exacerbate such chronic oral problems as gingival disease, existing ulcers, and other problems.

Clinical course of mucositis

Stomatitis can appear before the bone marrow becomes suppressed. The first symptoms of mucositis (inflammation of all mucosa) are expressed by stomatitis. The mucous membranes of the mouth are more sensitive than those of the intestine, possibly because of their different rates of cell division. Therefore, mouth ulcers may predict future damage to the entire alimentary canal. The development of mucositis in the small intestine or in other locations along the intestinal tract before expression in the oral cavity has been reported only rarely. Mucositis can be general, also invading the mucosa of the nose and conjunctiva.

The most common form of mucositis is stomatitis, in which the patient complains of a burning feeling, which begins about a week after the beginning of the treatment and is followed by the appearance of ulcers that coalesce. The lesions in the oral cavity appear everywhere on the oral mucosa, including the tongue, gums, and lips. The ulcers cause constant pain that is exacerbated by eating, drinking, and swallowing. A cytological examination reveals epithelial hyperplasia, dysplasia, atrophy, and degeneration of the glandular structure.

The Disease Staging of the World Health Organization (WHO) diagnosis for stomatitis is as follows:

Stage 0 - no ulcers
Stage 1 - oral pain without ulcers
Stage 2 - oral pain with ulcers but the ability to eat is retained
Stage 3 - liquid diet only
Stage 4 - inability to eat or to drink

Mucostoticogenic drugs and their mode of action

Most experimental work on cytoxic, mucostoticogenic drugs has been done using 5-fluorouracil and methotrexate. Both drugs inhibit DNA synthesis by inhibiting the synthesis of thymidylate, thereby preventing RNA and protein synthesis as well. After treatment with such drugs, the changes in the intestine resemble those of cellular sprue (gluten enteropathy), concentrating in the lining of the small intestine.

Standard treatment and prevention of stomatitis

Stomatitis is still considered a non-preventable side effect of chemotherapy. Only one drug—fulvic acid or calcium leukovarin, which was developed to protect normal cells against methotrexate—can help prevent the appearance of mucositis after methotrexate treatment.

The current therapy for stomatitis, practicing extensive oral hygiene to slightly reduce the infections, is only symptomatic. In addition to performing oral hygiene with anti-septic alkaline mouthwash solutions, the local anesthetic drug Xylocaine™ is applied before brushing the teeth or before treating plaque and gingivitis, as well as an antifungal drug like nystatin. Such treatments are simply palliative, however, easing the severity and the accompanying side effects of the disease without curing it. The localized treatment is short lasting, the taste of the drugs are extremely disagreeable, and the danger of absorption limits their frequency of application. Such treatment is effective only in mild-to-intermediate cases of stomatitis, at best, whereas intermediate and severe cases, require systemic therapy with narcotics.

Indeed, in many cases, the developing stomatitis precludes the administration of planned chemotherapeutic agent regimens and decreases the planned aggressiveness and dosage of the administered drugs.

Traumeel®

The information gained from reading anecdotal reports on the efficacy of standard treatments provided the rationale to perform a limited clinical trial to assess the feasibility of using the complex homeopathic preparation, Traumeel™, for treating chemotherapy-induced stomatitis. Traumeel™ Oral Liquid in Vials is a nonprescription drug developed in Germany, which has been sold for nearly a half-century in pharmacies in Germany, Austria, and Switzerland. Other dosage forms include oral drops, tablets, ointment, and ampules for injection.

Traumeel™ Oral Liquid in Vials contains the following ingredients in 100 ml of isotonic saline: Arnica 2X, Calendula 2X, Millefolium 3X, Chamomilla 3X, Symphytum 6X, Belladonna 2X and 0.1 ml, Acinorum 2X 0.05 ml, Bellis perennis 2X 0.05 ml, Hypericum 2X 0.03 ml, Echinacea angustifolia 2X, Echinacea purpurea 2X and 0.025 ml, Hamamelis 1X 0.01, Mercurius sol. 6X 0.05 gr., and Hepar sulfuris 6X 0.1 gr.

Trauma, inflammation, and degenerative processes are the main indications for administering Traumeel™. The drug has no known toxic side effects (see below) because its ingredients are diluted by several orders of magnitude below toxic levels.

Veterinary uses of Traumeel™, such as in cattle that are destined for slaughter are also very popular in Germany. The slaughter of Traumeel™-treated cattle is
Age Distribution of Patients Admitted to Traumeel® Trial

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
<th>Mean age (years)</th>
<th>Standard deviation</th>
<th>Maximum age (years)</th>
<th>Minimum age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>20</td>
<td>12.30 ± 3.799</td>
<td></td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Untreated</td>
<td>7</td>
<td>11.29 ± 3.302</td>
<td></td>
<td>16</td>
<td>7</td>
</tr>
</tbody>
</table>

ANOVA, p=0.54

Tab. 2: Age Distribution of Patients Admitted to Traumeel® Trial

Distribution of Disease Stage in Patients Admitted to Traumeel® Trial

<table>
<thead>
<tr>
<th>Disease Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Treated</td>
<td>4</td>
<td>20.0</td>
<td>2</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Untreated</td>
<td>2</td>
<td>28.6</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>7</td>
<td>27</td>
</tr>
</tbody>
</table>

Pearson Chi Square; Value = 0.902; D.F. = 3; prob. = 0.8249

Tab. 3: Distribution of Disease Stage in Patients Admitted to Traumeel® Trial

Distribution of Pre-Trial Treatment Status in Patients Admitted to Traumeel® Trial

<table>
<thead>
<tr>
<th>Anti-cancer Treatment Status</th>
<th>Group</th>
<th>Post-chemo.</th>
<th>GVHD</th>
<th>PBMT</th>
<th>PTBI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Treated</td>
<td>11</td>
<td>55.0</td>
<td>2</td>
<td>10.0</td>
<td>6</td>
</tr>
<tr>
<td>Untreated</td>
<td>4</td>
<td>57.1</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>2</td>
<td>8</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

1Pearson Chi Square; Value = 1.311; D.F. = 3; prob. = 0.7264
2GVHD: graft-versus-host disease; PBMT: post bone-marrow transplant; PTBI: post total body irradiation

Tab. 4: Distribution of Pre-Trial Treatment Status in Patients Admitted to Traumeel® Trial

Distribution of Opiate Requirement in Patients Admitted to Traumeel® Trial

<table>
<thead>
<tr>
<th>Opiate Treatment</th>
<th>No.</th>
<th>%</th>
<th>Yes</th>
<th>No.</th>
<th>%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>18</td>
<td>90.0</td>
<td>2</td>
<td>10.0</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Untreated</td>
<td>4</td>
<td>57.1</td>
<td>3</td>
<td>42.9</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>100</td>
<td>5</td>
<td>100</td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

Fisher Exact Test (2-tail), p=0.09

Tab. 5: Distribution of Opiate Requirement in Patients Admitted to Traumeel® Trial
not forbidden by German law. In German-speaking countries, Traumeel® is a very popular alternative drug and is used by many conventional physicians as well, especially in sports medicine. A 1981 manufacturer’s survey of 3,300 German physicians showed that Traumeel® was prescribed for over 3.5 million patients, of whom 69% used the drug for up to 3 months. About 18% of the patients used it continuously for 3–6 months; 12% used it for over 6 months, and some patients used it for several years. Adverse side effects, such as skin reactions to the ointment or a local pruritus to the injections, were reported in only 0.0055% of the cases. Over 90% of the physicians using the drug expressed satisfaction with Traumeel®.

Toxicology of Traumeel®

Most of the ingredients of Traumeel® are either non-toxic or their toxicity is very low, due to their dilute concentrations. Because the concentration of each component in Traumeel® is almost zero, the likelihood of acute or chronic toxicity does not exist. Belladonna and Mercurius (mercury) are the two most toxic compounds in Traumeel®. In humans, the lethal dose of belladonna is 0-5-5 g/kg. More than 10 belladonna-containing (tincture) drugs are on the market. For example, a 2.5% pediatric belladonna and ephedrine mixture contains belladonna tincture. The recommended dose for children (up to one year of age) is 0.5 ml. Traumeel® Oral Liquid in Vials contains 0.001 ml of a stock solution of belladonna, meaning that one ampule containing 2.2 ml of a dilute solution contains 2.2 x 10⁻³ ml belladonna 2X, which is 10⁻⁹%. In other words, the belladonna concentration in a 2.5% pediatric belladonna and ephedrine mixture is about 1000 times higher than that in Traumeel®.

Traumeel® also contains the mercury compound Mercurius solubilis, with the following composition: Mercurio-amidonitrate (NH₄Hg₃(NO₃)₂), Mercurius metal, and Mercurius (1) oxide (Hg₂O). One ampule of Traumeel® contains 10⁻⁷ g Mercurius solubilis. In humans, the provisional tolerable weekly intake of mer-

cury is up to 300 mg or 5 mg/kg. A patient who needs 35 doses of Traumeel® per week would thus have a weekly intake of 3.5 x 10⁻⁴ g or a third of the allowable mercury content in drinking water according to German law.

Limited clinical trial with Traumeel® in chemotherapy-induced stomatitis

We studied 27 subjects between the ages of 6 and 18 years to evaluate the feasibility of using Traumeel® Oral Liquid in Vials for treating chemotherapy-induced stomatitis. Twenty patients received Traumeel® and seven children who did not receive Traumeel® were chosen at random for a prospective follow-up to compare the duration of symptoms in study participants to untreated stomatitis patients. We assessed the distribution of ulcer severity in all participants according to WHO staging.

The age distribution (Table 2), stages of disease (Table 3), and anticancer treatments (Table 4) were similar in both groups. In the untreated group, however, opiate use was higher, although the difference was not statistically significant (see Table 5). All statistical analyses were carried out using BMDP Statistical Software.²

In all treated children, each treatment was followed by an immediate decrease in pain, which continued for 30 minutes to 2.5 hours. In children with Stages 1-2 stomatitis, the pain reduction lasted between 24-72 hours until the stomatitis disappeared. Children that began with Stages 3-4 stomatitis required 6-8 days of treatment. In two children with GVHD (graft versus host disease)-associated stomatitis, the pain was significantly reduced for several hours, and then 24 hours later the children ceased to complain about pain. Nevertheless, the basic process that had caused the stomatitis in these two children continued, so the children continued to receive treatment 2-3 times per day for another 5-10 days. Only one participant, a patient with Stage 4 stomatitis, according to the WHO definition, was receiving morphine at the beginning of the trial. Immediately after the first dose of Traumeel®, the morphine dosage was reduced by half. No other participant required treatment with narcotics, and those with Stages 1-2 stomatitis at the beginning of the trial no longer required analgesic treatment.
Table 6 shows the product-limit survival analysis that we used to compare symptom duration. From this table it can be seen that the difference between the two groups is highly significant, according to stringent statistical analysis. The median symptom duration in the treated group was 6 days, compared with 13 days in the untreated group.

Conclusion

We conducted this small preliminary study to gain a first impression about the effectiveness of Traumeel® Oral Liquid in Vials on mucositis. Obtaining positive results in such a study is a prerequisite to performing a large scale clinical trial according to strict scientific guidelines. Although we did not conduct this study as a randomized, double-blind trial, and the number of participants was small, the results were still impressive. Even if we presume that part of the success was due to the placebo effect, which is known to be very small in a hyper-acute system, such encouraging results led us to believe that Traumeel® Oral Liquid in Vials has genuine biological activity.

In addition to its biological activity, the onset of action of Traumeel® was remarkable, with patients reporting a strong amelioration of pain within minutes. Some patients also reported a mood improvement. Such rapid action is unusual because the mucosa does not regenerate within minutes. Notably, the improvement persisted.

Although the decreased use of opioids as analgesics in the Traumeel®-treated group was not significant, we recognized a clear tendency toward such a decrease, so we speculate that the results of a study on a larger group of participants might show a difference in favor of the Traumeel®-treated patients.

The results of this limited, preliminary trial support the feasibility of performing a prospective, double-blind trial to assess whether positive results will be obtained under more stringent, scientific conditions, and whether Traumeel® treatment can reduce the duration of pain in stomatitis patients. Such a study is currently taking place in two medical centers in Israel.

References

Address of the author:
Menachem Oberbaum, M.D.
Shaare Zedek Medical Center
The Institute of Research
on Complementary Medicine
Department of Pediatrics
Jerusalem
Israel